Existence and uniqueness of solutions for miscible liquids model in porous media
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the existence and uniqueness of solutions for miscible liquids model in porous media. The model describing the phenomenon is a system of equations coupling hydrodynamic equations with concentration equation taking into account the Korteweg stress. We assume that the fluid is incompressible and its motion is described by the Darcy law. We prove the existence and uniqueness of global solutions for the initial boundary value problem.
Classification : 35A01, 35A02, 76D03, 76S05
Keywords: Darcy approximation, Korteweg stress, miscible liquids, porous media
@article{EJDE_2013__2013__a172,
     author = {Allali, Karam},
     title = {Existence and uniqueness of solutions for miscible liquids model in porous media},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a172/}
}
TY  - JOUR
AU  - Allali, Karam
TI  - Existence and uniqueness of solutions for miscible liquids model in porous media
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a172/
LA  - en
ID  - EJDE_2013__2013__a172
ER  - 
%0 Journal Article
%A Allali, Karam
%T Existence and uniqueness of solutions for miscible liquids model in porous media
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a172/
%G en
%F EJDE_2013__2013__a172
Allali, Karam. Existence and uniqueness of solutions for miscible liquids model in porous media. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a172/