Symmetric positive solutions for $\phi$-Laplacian boundary-value problems with integral boundary conditions
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the existence, multiplicity, and nonexistence of symmetric positive solutions for a class of four-order integral boundary value problems with $\phi$-Laplacian operator. The arguments mainly rely on the Guo-Krasnosel'skii fixed point theorem of cone expansion and compression of norm type and Leggett-Williams fixed point theorem. Finally, some examples are presented to illustrate the main results.
Classification : 34B15, 34B18
Keywords: boundary value problems, integral boundary conditions, symmetric positive solutions, phi-Laplacian operator, fixed point theorem
@article{EJDE_2013__2013__a151,
     author = {Yang, Wengui},
     title = {Symmetric positive solutions for $\phi${-Laplacian} boundary-value problems with integral boundary conditions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a151/}
}
TY  - JOUR
AU  - Yang, Wengui
TI  - Symmetric positive solutions for $\phi$-Laplacian boundary-value problems with integral boundary conditions
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a151/
LA  - en
ID  - EJDE_2013__2013__a151
ER  - 
%0 Journal Article
%A Yang, Wengui
%T Symmetric positive solutions for $\phi$-Laplacian boundary-value problems with integral boundary conditions
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a151/
%G en
%F EJDE_2013__2013__a151
Yang, Wengui. Symmetric positive solutions for $\phi$-Laplacian boundary-value problems with integral boundary conditions. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a151/