Existence of periodic solutions in the modified wheldon model of CML
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Wheldon model (1975) of a chronic myelogenous leukemia (CML) dynamics is modified and enriched by introduction of a time-varying microenvironment and time-dependent drug efficacies. The resulting model is a special class of nonautonomous nonlinear system of differential equations with delays. Via topological methods, the existence of positive periodic solutions is proven.
Classification : 34K20, 92D25, 34K45, 34K12, 34K25
Keywords: nonlinear nonautonomous delay differential equation, positive periodic solution, Leray-Schauder degree, chronic myelogenous leukemia, model with pharmacokinetics
@article{EJDE_2013__2013__a145,
     author = {Amster, Pablo and Balderrama, Rocio and Idels, Lev},
     title = {Existence of periodic solutions in the modified wheldon model of {CML}},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a145/}
}
TY  - JOUR
AU  - Amster, Pablo
AU  - Balderrama, Rocio
AU  - Idels, Lev
TI  - Existence of periodic solutions in the modified wheldon model of CML
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a145/
LA  - en
ID  - EJDE_2013__2013__a145
ER  - 
%0 Journal Article
%A Amster, Pablo
%A Balderrama, Rocio
%A Idels, Lev
%T Existence of periodic solutions in the modified wheldon model of CML
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a145/
%G en
%F EJDE_2013__2013__a145
Amster, Pablo; Balderrama, Rocio; Idels, Lev. Existence of periodic solutions in the modified wheldon model of CML. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a145/