Existence and stability of mild solutions to impulsive stochastic neutral partial functional differential equations
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study a class of impulsive stochastic neutral partial functional differential equations in a real separable Hilbert space. By using Banach fixed point theorem, we give sufficient conditions for the existence and uniqueness of a mild solution. Also the exponential p-stability of a mild solution and its sample paths are obtained.
Classification : 35R60, 60H15, 35B35, 35A01
Keywords: existence and uniqueness, exponential stability, mild solution, impulsive stochastic neutral equations
@article{EJDE_2013__2013__a1,
     author = {He, Danhua and Xu, Liguang},
     title = {Existence and stability of mild solutions to impulsive stochastic neutral partial functional differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a1/}
}
TY  - JOUR
AU  - He, Danhua
AU  - Xu, Liguang
TI  - Existence and stability of mild solutions to impulsive stochastic neutral partial functional differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a1/
LA  - en
ID  - EJDE_2013__2013__a1
ER  - 
%0 Journal Article
%A He, Danhua
%A Xu, Liguang
%T Existence and stability of mild solutions to impulsive stochastic neutral partial functional differential equations
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a1/
%G en
%F EJDE_2013__2013__a1
He, Danhua; Xu, Liguang. Existence and stability of mild solutions to impulsive stochastic neutral partial functional differential equations. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a1/