Existence of bounded positive solutions of a nonlinear differential system
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the existence and nonexistence of solutions for the system $$\displaylines{ \frac{1}{A}(Au')'=pu^{\alpha }v^{s}\quad \hbox{on }(0,\infty ), \cr \frac{1}{B}(Bu')'=qu^{r}v^{\beta }\quad \hbox{on }(0,\infty ), \cr Au'(0)=0,\quad u(\infty )=a>0, \cr Bv'(0)=0,\quad v(\infty )=b>0, }$$ where $\alpha ,\beta \geq 1, s,r\geq 0$, p,q are two nonnegative functions on $(0,\infty )$ and A, B satisfy appropriate conditions. Using potential theory tools, we show the existence of a positive continuous solution. This allows us to prove the existence of entire positive radial solutions for some elliptic systems.
Classification : 35J56, 31B10, 34B16, 34B27
Keywords: nonlinear equation, Green's function, asymptotic behavior, singular operator, positive solution
@article{EJDE_2012__2012__a92,
     author = {Gontara, Sabrine},
     title = {Existence of bounded positive solutions of a nonlinear differential system},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a92/}
}
TY  - JOUR
AU  - Gontara, Sabrine
TI  - Existence of bounded positive solutions of a nonlinear differential system
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a92/
LA  - en
ID  - EJDE_2012__2012__a92
ER  - 
%0 Journal Article
%A Gontara, Sabrine
%T Existence of bounded positive solutions of a nonlinear differential system
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a92/
%G en
%F EJDE_2012__2012__a92
Gontara, Sabrine. Existence of bounded positive solutions of a nonlinear differential system. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a92/