Existence of lattice solutions to semilinear elliptic systems with periodic potential
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Under the assumption that the potential W is invariant under a general discrete reflection group $G'=TG$ acting on $\mathbb{R}^n$, we establish existence of G'-equivariant solutions to $\Delta u - W_u(u) = 0$, and find an estimate. By taking the size of the cell of the lattice in space domain to infinity, we obtain that these solutions converge to G-equivariant solutions connecting the minima of the potential W along certain directions at infinity. When particularized to the nonlinear harmonic oscillator $u''+\alpha \sin u=0, \alpha>0$, the solutions correspond to those in the phase plane above and below the heteroclinic connections, while the G-equivariant solutions captured in the limit correspond to the heteroclinic connections themselves. Our main tool is the G'-positivity of the parabolic semigroup associated with the elliptic system which requires only the hypothesis of symmetry for W. The constructed solutions are positive in the sense that as maps from $\mathbb{R}^n$ into itself leave the closure of the fundamental alcove (region) invariant.
Classification : 35J20, 35J50
Keywords: lattice solution, invariant, periodic potential, elliptic system, reflection, discrete group, variational calculus
@article{EJDE_2012__2012__a9,
     author = {Alikakos, Nicholas D. and Smyrnelis, Panayotis},
     title = {Existence of lattice solutions to semilinear elliptic systems with periodic potential},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a9/}
}
TY  - JOUR
AU  - Alikakos, Nicholas D.
AU  - Smyrnelis, Panayotis
TI  - Existence of lattice solutions to semilinear elliptic systems with periodic potential
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a9/
LA  - en
ID  - EJDE_2012__2012__a9
ER  - 
%0 Journal Article
%A Alikakos, Nicholas D.
%A Smyrnelis, Panayotis
%T Existence of lattice solutions to semilinear elliptic systems with periodic potential
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a9/
%G en
%F EJDE_2012__2012__a9
Alikakos, Nicholas D.; Smyrnelis, Panayotis. Existence of lattice solutions to semilinear elliptic systems with periodic potential. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a9/