Existence of solutions for the $p$-Laplacian involving a Radon measure
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article we study the existence of solutions to eigenvalue problem $$\displaylines{ -\hbox{div} (|\nabla u|^{p-2}\nabla u)-\lambda |u|^{p-2}u\mu=f \quad \hbox{in }\Omega,\cr u=0\quad\hbox{on }\partial\Omega }$$ where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ and $\mu$ is a nonnegative Radon measure.
Classification : 34B15, 34B18, 35A01, 35A02
Keywords: Dirichlet problem, p-Laplacian, genus function, eigenfunction, nonlinear eigenvalue problem, palais-Smale condition, mountain-pass theorem, critical point
@article{EJDE_2012__2012__a88,
     author = {Belhaj Rhouma, Nedra and Sayeb, Wahid},
     title = {Existence of solutions for the $p${-Laplacian} involving a {Radon} measure},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a88/}
}
TY  - JOUR
AU  - Belhaj Rhouma, Nedra
AU  - Sayeb, Wahid
TI  - Existence of solutions for the $p$-Laplacian involving a Radon measure
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a88/
LA  - en
ID  - EJDE_2012__2012__a88
ER  - 
%0 Journal Article
%A Belhaj Rhouma, Nedra
%A Sayeb, Wahid
%T Existence of solutions for the $p$-Laplacian involving a Radon measure
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a88/
%G en
%F EJDE_2012__2012__a88
Belhaj Rhouma, Nedra; Sayeb, Wahid. Existence of solutions for the $p$-Laplacian involving a Radon measure. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a88/