A Lie algebra approach to susceptible-infected-susceptible epidemics
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The susceptible-infected-susceptible (SIS) epidemic model can be represented by a continuous-time Markov chain, which is governed by a set of deterministic differential equations (Kolmogorov forward equations). In this paper, a Lie algebra approach is applied to solve an SIS model where infection rate and recovery rate are time-varying. The method presented here has been used widely in chemical and physical sciences but not in epidemic applications due to insufficient symmetries.
Classification : 92D30, 17B80, 60J22
Keywords: epidemic dynamics, Lie algebra, Riccati equation, susceptible-infected-susceptible
@article{EJDE_2012__2012__a7,
     author = {Shang, Yilun},
     title = {A {Lie} algebra approach to susceptible-infected-susceptible epidemics},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a7/}
}
TY  - JOUR
AU  - Shang, Yilun
TI  - A Lie algebra approach to susceptible-infected-susceptible epidemics
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a7/
LA  - en
ID  - EJDE_2012__2012__a7
ER  - 
%0 Journal Article
%A Shang, Yilun
%T A Lie algebra approach to susceptible-infected-susceptible epidemics
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a7/
%G en
%F EJDE_2012__2012__a7
Shang, Yilun. A Lie algebra approach to susceptible-infected-susceptible epidemics. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a7/