Existence and uniform asymptotic stability for an abstract differential equation with infinite delay
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using the Contraction Mapping Principle, we study the existence, uniqueness, and uniform asymptotic stability of solutions to an abstract differential equation with infinite delay of the form $du(t)/dt+Au(t)=B(t,u_t)$, where A is a positive sectorial operator and the nonlinear part B is Lipschitz continuous with respect to a fractional power of A in the second variable and the Lipschitz coefficient may depend on time t. Some special cases and examples are provided to illustrate the results obtained.
Classification : 35B35, 37L15
Keywords: infinite delay, sectorial operator, mild solution, uniform asymptotic stability, fixed point method
@article{EJDE_2012__2012__a63,
     author = {Cung The Anh and Le Van Hieu},
     title = {Existence and uniform asymptotic stability for an abstract differential equation with infinite delay},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a63/}
}
TY  - JOUR
AU  - Cung The Anh
AU  - Le Van Hieu
TI  - Existence and uniform asymptotic stability for an abstract differential equation with infinite delay
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a63/
LA  - en
ID  - EJDE_2012__2012__a63
ER  - 
%0 Journal Article
%A Cung The Anh
%A Le Van Hieu
%T Existence and uniform asymptotic stability for an abstract differential equation with infinite delay
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a63/
%G en
%F EJDE_2012__2012__a63
Cung The Anh; Le Van Hieu. Existence and uniform asymptotic stability for an abstract differential equation with infinite delay. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a63/