Weak solutions for degenerate semilinear elliptic BVPs in unbounded domains
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we prove the existence of a weak solution for the degenerate semilinear elliptic Dirichlet boundary-value problem $$\displaylines{ Lu(x)+\sum_{i=1}^n g(x)h(u(x))D_iu(x)=f(x)\quad \hbox{in }\Omega,\cr u=0\quad \hbox{on }\partial\Omega, }$$ in a suitable weighted Sobolev space. Here $\Omega\subset\mathbb{R}^n, 1\leq n\leq3,$ is not necessarily bounded.
Classification : 46E35, 35J61
Keywords: semilinear elliptic boundary value problem, unbounded domain, pseudomonotone operator
@article{EJDE_2012__2012__a57,
     author = {Kar, Rasmita},
     title = {Weak solutions for degenerate semilinear elliptic {BVPs} in unbounded domains},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a57/}
}
TY  - JOUR
AU  - Kar, Rasmita
TI  - Weak solutions for degenerate semilinear elliptic BVPs in unbounded domains
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a57/
LA  - en
ID  - EJDE_2012__2012__a57
ER  - 
%0 Journal Article
%A Kar, Rasmita
%T Weak solutions for degenerate semilinear elliptic BVPs in unbounded domains
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a57/
%G en
%F EJDE_2012__2012__a57
Kar, Rasmita. Weak solutions for degenerate semilinear elliptic BVPs in unbounded domains. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a57/