Positive solutions for a system of higher order boundary-value problems involving all derivatives of odd orders
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article we study the existence of positive solutions for the system of higher order boundary-value problems involving all derivatives of odd orders $$\displaylines{ (-1)^mw^{(2m)} =f(t, w, w',-w''',\dots, (-1)^{m-1}w^{(2m-1)}, z, z',-z''',\dots, (-1)^{n-1}z^{(2n-1)}), \cr (-1)^nz^{(2n)} =g(t, w, w',-w''',\dots, (-1)^{m-1}w^{(2m-1)}, z, z',-z''',\dots, (-1)^{n-1}z^{(2n-1)}), \cr w^{(2i)}(0)=w^{(2i+1)}(1)=0\quad (i=0,1,\dots, m-1),\cr z^{(2j)}(0)=z^{(2j+1)}(1)=0\quad (j=0,1,\dots, n-1). } $$ Here $f,g\in C([0,1]\times\mathbb{R}_+^{m+n+2},\mathbb{R}_+)(\mathbb{R}_+:=[0,+\infty))$. Our hypotheses imposed on the nonlinearities $f$ and $g$ are formulated in terms of two linear functions $h_1(x)$ and $h_2(y)$. We use fixed point index theory to establish our main results based on a priori estimates of positive solutions achieved by utilizing nonnegative matrices.
Classification : 34B18, 45G15, 45M20, 47H07, 47H11
Keywords: systenm of higher order boundary value problem, positive solution, nonnegative matrix, fixed point index
@article{EJDE_2012__2012__a53,
     author = {Wang, Kun and Yang, Zhilin},
     title = {Positive solutions for a system of higher order boundary-value problems involving all derivatives of odd orders},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a53/}
}
TY  - JOUR
AU  - Wang, Kun
AU  - Yang, Zhilin
TI  - Positive solutions for a system of higher order boundary-value problems involving all derivatives of odd orders
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a53/
LA  - en
ID  - EJDE_2012__2012__a53
ER  - 
%0 Journal Article
%A Wang, Kun
%A Yang, Zhilin
%T Positive solutions for a system of higher order boundary-value problems involving all derivatives of odd orders
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a53/
%G en
%F EJDE_2012__2012__a53
Wang, Kun; Yang, Zhilin. Positive solutions for a system of higher order boundary-value problems involving all derivatives of odd orders. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a53/