Optimal control problem for a sixth-order Cahn-Hilliard equation with nonlinear diffusion
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the initial-boundary-value problem for a sixth-order Cahn-Hilliard type equation $$\displaylines{ u_t=D^2\mu, \cr \mu=\gamma D^4u-a(u)D^2u-\frac{a'(u)}2|D u|^2+f(u)+ku_t, }$$ which describes the separation properties of oil-water mixtures, when a substance enforcing the mixing of the phases is added. The optimal control of the sixth order Cahn-Hilliard type equation under boundary condition is given and the existence of optimal solution to the sixth order Cahn-Hilliard type equation is proved.
Classification : 49J20, 35K35, 35K55
Keywords: Cahn-Hilliard equation, existence, optimal control, optimal solution
@article{EJDE_2012__2012__a50,
     author = {Liu, Changchun and Wang, Zhao},
     title = {Optimal control problem for a sixth-order {Cahn-Hilliard} equation with nonlinear diffusion},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a50/}
}
TY  - JOUR
AU  - Liu, Changchun
AU  - Wang, Zhao
TI  - Optimal control problem for a sixth-order Cahn-Hilliard equation with nonlinear diffusion
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a50/
LA  - en
ID  - EJDE_2012__2012__a50
ER  - 
%0 Journal Article
%A Liu, Changchun
%A Wang, Zhao
%T Optimal control problem for a sixth-order Cahn-Hilliard equation with nonlinear diffusion
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a50/
%G en
%F EJDE_2012__2012__a50
Liu, Changchun; Wang, Zhao. Optimal control problem for a sixth-order Cahn-Hilliard equation with nonlinear diffusion. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a50/