Persistence of spreading speed for the delayed Fisher equation
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns the long time behavior of the delayed Fisher equation without quasimonotonicity. When the time delay is small and the instantaneous self-limitation effect exists, it is proved that the spreading speed is the same as that of the classical Fisher equation.
Classification : 35C07, 35K57, 37C65
Keywords: nonmonotone equation, spreading speed, delayed equation
@article{EJDE_2012__2012__a42,
     author = {Pan, Shuxia},
     title = {Persistence of spreading speed for the delayed {Fisher} equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a42/}
}
TY  - JOUR
AU  - Pan, Shuxia
TI  - Persistence of spreading speed for the delayed Fisher equation
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a42/
LA  - en
ID  - EJDE_2012__2012__a42
ER  - 
%0 Journal Article
%A Pan, Shuxia
%T Persistence of spreading speed for the delayed Fisher equation
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a42/
%G en
%F EJDE_2012__2012__a42
Pan, Shuxia. Persistence of spreading speed for the delayed Fisher equation. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a42/