Cauchy-Kowalevski and polynomial ordinary differential equations
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Cauchy-Kowalevski Theorem is the foremost result guaranteeing existence and uniqueness of local solutions for analytic quasilinear partial differential equations with Cauchy initial data. The techniques of Cauchy-Kowalevski may also be applied to initial-value ordinary differential equations. These techniques, when applied in the polynomial ordinary differential equation setting, lead one naturally to a method in which coefficients of the series solution are easily computed in a recursive manner, and an explicit majorization admits a clear a priori error bound. The error bound depends only on immediately observable quantities of the polynomial system; coefficients, initial conditions, and polynomial degree. The numerous benefits of the polynomial system are shown for a specific example.
Classification : 34A12, 34A34, 35A10
Keywords: automatic differentiation, power series, Taylor series, polynomial ODE, majorant, error bound
@article{EJDE_2012__2012__a36,
     author = {Thelwell, Roger J. and Warne, Paul G. and Warne, Debra A.},
     title = {Cauchy-Kowalevski and polynomial ordinary differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a36/}
}
TY  - JOUR
AU  - Thelwell, Roger J.
AU  - Warne, Paul G.
AU  - Warne, Debra A.
TI  - Cauchy-Kowalevski and polynomial ordinary differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a36/
LA  - en
ID  - EJDE_2012__2012__a36
ER  - 
%0 Journal Article
%A Thelwell, Roger J.
%A Warne, Paul G.
%A Warne, Debra A.
%T Cauchy-Kowalevski and polynomial ordinary differential equations
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a36/
%G en
%F EJDE_2012__2012__a36
Thelwell, Roger J.; Warne, Paul G.; Warne, Debra A. Cauchy-Kowalevski and polynomial ordinary differential equations. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a36/