Existence of solutions for discontinuous $p(x)$-Laplacian problems with critical exponents
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the existence of solutions to the problem $$\displaylines{ -\hbox{div}(|\nabla u|^{p(x)-2}\nabla u) =\lambda |u|^{p^{*}(x)-2}u + f(u)\quad x \in \Omega ,\cr u = 0 \quad x \in \partial\Omega, }$$ where $\Omega$ is a smooth bounded domain in ${\mathbb{R}}^{N}, p(x)$ is a continuous function with $1$ and $p^{*}(x) = \frac{Np(x)}{N-p(x)}$. Applying nonsmooth critical point theory for locally Lipschitz functionals, we show that there is at least one nontrivial solution when $\lambda$ less than a certain number, and $f$ maybe discontinuous.
Classification : 35J92, 35J70, 35R70
Keywords: $p(x)$-Laplacian problem, critical Sobolev exponents, discontinuous nonlinearities
@article{EJDE_2012__2012__a34,
     author = {Shang, Xudong and Wang, Zhigang},
     title = {Existence of solutions for discontinuous $p(x)${-Laplacian} problems with critical exponents},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a34/}
}
TY  - JOUR
AU  - Shang, Xudong
AU  - Wang, Zhigang
TI  - Existence of solutions for discontinuous $p(x)$-Laplacian problems with critical exponents
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a34/
LA  - en
ID  - EJDE_2012__2012__a34
ER  - 
%0 Journal Article
%A Shang, Xudong
%A Wang, Zhigang
%T Existence of solutions for discontinuous $p(x)$-Laplacian problems with critical exponents
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a34/
%G en
%F EJDE_2012__2012__a34
Shang, Xudong; Wang, Zhigang. Existence of solutions for discontinuous $p(x)$-Laplacian problems with critical exponents. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a34/