Harmonic solutions to a class of differential-algebraic equations with separated variables
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the properties of periodic solutions of a class of periodically perturbed Differential-Algebraic Equations with separated variables. Under suitable hypotheses, these equations are equivalent to separated variables ODEs on a manifold. By combining known results on Differential-Algebraic Equations, with an argument about ODEs on manifolds, we obtain a global continuation result for the T-periodic solutions to the considered equations. As an application of our method, a multiplicity result is provided.
Classification : 34A09, 34C25, 34C40
Keywords: differential-algebraic equations, periodic solutions, ordinary differential equations on manifolds, degree of a vector field
@article{EJDE_2012__2012__a23,
     author = {Bisconti, Luca},
     title = {Harmonic solutions to a class of differential-algebraic equations with separated variables},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a23/}
}
TY  - JOUR
AU  - Bisconti, Luca
TI  - Harmonic solutions to a class of differential-algebraic equations with separated variables
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a23/
LA  - en
ID  - EJDE_2012__2012__a23
ER  - 
%0 Journal Article
%A Bisconti, Luca
%T Harmonic solutions to a class of differential-algebraic equations with separated variables
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a23/
%G en
%F EJDE_2012__2012__a23
Bisconti, Luca. Harmonic solutions to a class of differential-algebraic equations with separated variables. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a23/