Higher order viability problem in Banach spaces
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show the existence of viable solutions to the differential inclusion $$\displaylines{ x^{(k)}(t) \in F(t,x(t))\cr x(0)=x_{0},\quad x^{(i)}(0)=y^i_{0},\quad i=1,\dots,k-1,\cr x(t) \in K\quad\hbox{on } [0,T], }$$ where $k \geq 1$, K is a closed subset of a separable Banach space and $F(t,x)$ is an integrable bounded multifunction with closed values, (strongly) measurable in t and Lipschitz continuous in x.
Classification : 34A60
Keywords: differential inclusion, measurability, selection, viability
@article{EJDE_2012__2012__a22,
     author = {Aitalioubrahim, Myelkebir and Sajid, Said},
     title = {Higher order viability problem in {Banach} spaces},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a22/}
}
TY  - JOUR
AU  - Aitalioubrahim, Myelkebir
AU  - Sajid, Said
TI  - Higher order viability problem in Banach spaces
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a22/
LA  - en
ID  - EJDE_2012__2012__a22
ER  - 
%0 Journal Article
%A Aitalioubrahim, Myelkebir
%A Sajid, Said
%T Higher order viability problem in Banach spaces
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a22/
%G en
%F EJDE_2012__2012__a22
Aitalioubrahim, Myelkebir; Sajid, Said. Higher order viability problem in Banach spaces. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a22/