Unique continuation for solutions of $p(x)$-Laplacian equations
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the unique continuation property for solutions to the quasilinear elliptic equation $$ \hbox{div}(|\nabla u|^{p(x)-2}\nabla u) +V(x)|u|^{p(x)-2}u=0\quad \hbox{in }\Omega, $$ where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ and $1$ for $x$ in $\Omega$.
Classification : 35D05, 35J60, 58E05
Keywords: $p(x)$-Laplace operator, unique continuation
@article{EJDE_2012__2012__a21,
     author = {Cuadro, Johnny and L\'opez, Gabriel},
     title = {Unique continuation for solutions of $p(x)${-Laplacian} equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a21/}
}
TY  - JOUR
AU  - Cuadro, Johnny
AU  - López, Gabriel
TI  - Unique continuation for solutions of $p(x)$-Laplacian equations
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a21/
LA  - en
ID  - EJDE_2012__2012__a21
ER  - 
%0 Journal Article
%A Cuadro, Johnny
%A López, Gabriel
%T Unique continuation for solutions of $p(x)$-Laplacian equations
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a21/
%G en
%F EJDE_2012__2012__a21
Cuadro, Johnny; López, Gabriel. Unique continuation for solutions of $p(x)$-Laplacian equations. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a21/