Complete geometric invariant study of two classes of quadratic systems
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, using affine invariant conditions, we give a complete study for quadratic systems with center and for quadratic Hamiltonian systems. There are two improvements over the results in [30] that studied centers up to GL-invariant, and over the results in [1] that classified Hamiltonian quadratic systems without invariants. The geometrical affine invariant study presented here is a crucial step toward the goal of the invariant classification of all quadratic systems according to their singularities, finite and infinite.
Classification : 34C05, 34A34
Keywords: quadratic vector fields, weak singularities, type of singularity
@article{EJDE_2012__2012__a17,
     author = {Artes, Joan C. and Llibre, Jaume and Vulpe, Nicolae},
     title = {Complete geometric invariant study of two classes of quadratic systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a17/}
}
TY  - JOUR
AU  - Artes, Joan C.
AU  - Llibre, Jaume
AU  - Vulpe, Nicolae
TI  - Complete geometric invariant study of two classes of quadratic systems
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a17/
LA  - en
ID  - EJDE_2012__2012__a17
ER  - 
%0 Journal Article
%A Artes, Joan C.
%A Llibre, Jaume
%A Vulpe, Nicolae
%T Complete geometric invariant study of two classes of quadratic systems
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a17/
%G en
%F EJDE_2012__2012__a17
Artes, Joan C.; Llibre, Jaume; Vulpe, Nicolae. Complete geometric invariant study of two classes of quadratic systems. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a17/