Kwong-wong-type integral equation on time scales
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Consider the second-order nonlinear dynamic equation $$ [r(t)x^\Delta(\rho(t))]^\Delta+p(t)f(x(t))=0, $$ where $$ \frac{r^\sigma(t)x^\Delta(t)}{f(x^\sigma(t))} =P^\sigma(t)+\int^\infty_{\sigma(t)}\frac{r^\sigma(s) [\int^1_0f'(x_h(s))dh][x^\Delta(s)]^2}{f(x(s)) f(x^\sigma(s))}\Delta s $$ is satisfied for $$ [r(t)x^{\Delta}(\rho(t))]^\Delta+p(t)f(x(t))=0, $$ is oscillatory, under certain conditions.
Classification : 34K11, 39A10, 39A99
Keywords: nonlinear dynamic equation, integral equation, nonoscillatory solution
@article{EJDE_2011__2011__a98,
     author = {Jia, Baoguo},
     title = {Kwong-wong-type integral equation on time scales},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a98/}
}
TY  - JOUR
AU  - Jia, Baoguo
TI  - Kwong-wong-type integral equation on time scales
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a98/
LA  - en
ID  - EJDE_2011__2011__a98
ER  - 
%0 Journal Article
%A Jia, Baoguo
%T Kwong-wong-type integral equation on time scales
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a98/
%G en
%F EJDE_2011__2011__a98
Jia, Baoguo. Kwong-wong-type integral equation on time scales. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a98/