Stability of second-order differential inclusions
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For an arbitrary second-order stable matrix A, we calculate the maximum positive value R for which the differential inclusion $$ \dot{x}\in F_{R}(x):=\{(A+\Delta)x, \Delta \in \mathbb{R}^{2\times 2}, \|\Delta \| \leq R \} $$ is asymptotically stable.
Classification : 93D09, 34A60
Keywords: robust stability, stability radius, differential inclusions
@article{EJDE_2011__2011__a95,
     author = {Gonzalez, Henry},
     title = {Stability of second-order differential inclusions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a95/}
}
TY  - JOUR
AU  - Gonzalez, Henry
TI  - Stability of second-order differential inclusions
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a95/
LA  - en
ID  - EJDE_2011__2011__a95
ER  - 
%0 Journal Article
%A Gonzalez, Henry
%T Stability of second-order differential inclusions
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a95/
%G en
%F EJDE_2011__2011__a95
Gonzalez, Henry. Stability of second-order differential inclusions. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a95/