Quadratic forms as Lyapunov functions in the study of stability of solutions to difference equations
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A system of linear autonomous difference equations $x(n+1)=Ax(n)$ is considered, where $x\in \mathbb{R}^k, A$ is a real nonsingular $k\times k$ matrix. In this paper it has been proved that if $W(x)$ is any quadratic form and $m$ is any positive integer, then there exists a unique quadratic form $V(x)$ such that $\Delta_m V=V(A^mx)-V(x)=W(x)$ holds if and only if $\mu_i\mu_j\neq1 (i=1, 2 \dots k; j=1, 2 \dots k)$ where $\mu_1,\mu_2,\dots,\mu_k$ are the roots of the equation $\det(A^m-\mu I)=0$. A number of theorems on the stability of difference systems have also been proved. Applying these theorems, the stability problem of the zero solution of the nonlinear system $x(n+1)=Ax(n)+X(x(n))$ has been solved in the critical case when one eigenvalue of a matrix $A$ is equal to minus one, and others lie inside the unit disk of the complex plane.
Classification : 39A11, 34K20
Keywords: difference equations, Lyapunov function
@article{EJDE_2011__2011__a86,
     author = {Ignatyev, Alexander O. and Ignatyev, Oleksiy},
     title = {Quadratic forms as {Lyapunov} functions in the study of stability of solutions to difference equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a86/}
}
TY  - JOUR
AU  - Ignatyev, Alexander O.
AU  - Ignatyev, Oleksiy
TI  - Quadratic forms as Lyapunov functions in the study of stability of solutions to difference equations
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a86/
LA  - en
ID  - EJDE_2011__2011__a86
ER  - 
%0 Journal Article
%A Ignatyev, Alexander O.
%A Ignatyev, Oleksiy
%T Quadratic forms as Lyapunov functions in the study of stability of solutions to difference equations
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a86/
%G en
%F EJDE_2011__2011__a86
Ignatyev, Alexander O.; Ignatyev, Oleksiy. Quadratic forms as Lyapunov functions in the study of stability of solutions to difference equations. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a86/