Compact inverses of multipoint normal differential operators for first order
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this work, we describe all normal extensions of a multipoint minimal operators generated by linear multipoint differential-operator expressions for first order in the Hilbert space of vector functions, in terms of boundary values at the endpoints of infinitely many separated subintervals. Also we investigate compactness properties of the inverses of such extensions.
Classification : 47A05, 47A20
Keywords: direct sum of Hilbert spaces and operators, extension, multipoint selfadjoint operator, formally normal operator, normal operator
@article{EJDE_2011__2011__a85,
     author = {Ismailov, Zameddin I. and Otkun Cevik, Elif and Unluyol, Erdal},
     title = {Compact inverses of multipoint normal differential operators for first order},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a85/}
}
TY  - JOUR
AU  - Ismailov, Zameddin I.
AU  - Otkun Cevik, Elif
AU  - Unluyol, Erdal
TI  - Compact inverses of multipoint normal differential operators for first order
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a85/
LA  - en
ID  - EJDE_2011__2011__a85
ER  - 
%0 Journal Article
%A Ismailov, Zameddin I.
%A Otkun Cevik, Elif
%A Unluyol, Erdal
%T Compact inverses of multipoint normal differential operators for first order
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a85/
%G en
%F EJDE_2011__2011__a85
Ismailov, Zameddin I.; Otkun Cevik, Elif; Unluyol, Erdal. Compact inverses of multipoint normal differential operators for first order. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a85/