Dynamics near manifolds of equilibria of codimension one and bifurcation without parameters
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We investigate the breakdown of normal hyperbolicity of a manifold of equilibria of a flow. In contrast to classical bifurcation theory we assume the absence of any flow-invariant foliation at the singularity transverse to the manifold of equilibria. We call this setting bifurcation without parameters. We provide a description of general systems with a manifold of equilibria of codimension one as a first step towards a classification of bifurcations without parameters. This is done by relating the problem to singularity theory of maps.
Classification : 34C23, 34C20, 58K05
Keywords: manifolds of equilibria, bifurcation without parameters, singularities of vector fields
@article{EJDE_2011__2011__a78,
     author = {Liebscher, Stefan},
     title = {Dynamics near manifolds of equilibria of codimension one and bifurcation without parameters},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a78/}
}
TY  - JOUR
AU  - Liebscher, Stefan
TI  - Dynamics near manifolds of equilibria of codimension one and bifurcation without parameters
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a78/
LA  - en
ID  - EJDE_2011__2011__a78
ER  - 
%0 Journal Article
%A Liebscher, Stefan
%T Dynamics near manifolds of equilibria of codimension one and bifurcation without parameters
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a78/
%G en
%F EJDE_2011__2011__a78
Liebscher, Stefan. Dynamics near manifolds of equilibria of codimension one and bifurcation without parameters. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a78/