Classification of heteroclinic orbits of semilinear parabolic equations with a polynomial nonlinearity
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a given semilinear parabolic equation with polynomial nonlinearity, many solutions blow up in finite time. For a certain class of these equations, we show that some of the solutions which do not blow up actually tend to equilibria. The characterizing property of such solutions is a finite energy constraint, which comes about from the fact that this class of equations can be written as the flow of the L^2 gradient of a certain functional.
Classification : 35B40, 35K55
Keywords: heteroclinic connection, semilinear parabolic equation, equilibrium
@article{EJDE_2011__2011__a76,
     author = {Robinson, Michael},
     title = {Classification of heteroclinic orbits of semilinear parabolic equations with a polynomial nonlinearity},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a76/}
}
TY  - JOUR
AU  - Robinson, Michael
TI  - Classification of heteroclinic orbits of semilinear parabolic equations with a polynomial nonlinearity
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a76/
LA  - en
ID  - EJDE_2011__2011__a76
ER  - 
%0 Journal Article
%A Robinson, Michael
%T Classification of heteroclinic orbits of semilinear parabolic equations with a polynomial nonlinearity
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a76/
%G en
%F EJDE_2011__2011__a76
Robinson, Michael. Classification of heteroclinic orbits of semilinear parabolic equations with a polynomial nonlinearity. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a76/