Second-order boundary estimates for solutions to singular elliptic equations in borderline cases
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\Omega\subset R^N$ be a bounded smooth domain. We investigate the effect of the mean curvature of the boundary $\partial\Omega$ on the behaviour of the solution to the homogeneous Dirichlet boundary value problem for the equation $\Delta u+f(u)=0$. Under appropriate growth conditions on $f(t)$ as t approaches zero, we find asymptotic expansions up to the second order of the solution in terms of the distance from x to the boundary $\partial\Omega$.
Classification : 35B40, 35J67
Keywords: elliptic problems, singular equations, second order boundary approximation
@article{EJDE_2011__2011__a73,
     author = {Anedda, Claudia and Porru, Giovanni},
     title = {Second-order boundary estimates for solutions to singular elliptic equations in borderline cases},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a73/}
}
TY  - JOUR
AU  - Anedda, Claudia
AU  - Porru, Giovanni
TI  - Second-order boundary estimates for solutions to singular elliptic equations in borderline cases
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a73/
LA  - en
ID  - EJDE_2011__2011__a73
ER  - 
%0 Journal Article
%A Anedda, Claudia
%A Porru, Giovanni
%T Second-order boundary estimates for solutions to singular elliptic equations in borderline cases
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a73/
%G en
%F EJDE_2011__2011__a73
Anedda, Claudia; Porru, Giovanni. Second-order boundary estimates for solutions to singular elliptic equations in borderline cases. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a73/