A priori estimates for solutions to a four point boundary value problem for singularly perturbed semilinear differential equations
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns the existence and asymptotic behavior of solutions to a singularly perturbed second-order four-point boundary-value problem for nonlinear differential equations. Our analysis relies on the method of lower and upper solutions. We give accurate approximations of the solutions up to order $O(\epsilon)$.
Classification : 34K10, 34K26
Keywords: singular perturbation, four point boundary value problem, lower and upper solutions
@article{EJDE_2011__2011__a69,
     author = {Vrabel, Robert},
     title = {A priori estimates for solutions to a four point boundary value problem for singularly perturbed semilinear differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a69/}
}
TY  - JOUR
AU  - Vrabel, Robert
TI  - A priori estimates for solutions to a four point boundary value problem for singularly perturbed semilinear differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a69/
LA  - en
ID  - EJDE_2011__2011__a69
ER  - 
%0 Journal Article
%A Vrabel, Robert
%T A priori estimates for solutions to a four point boundary value problem for singularly perturbed semilinear differential equations
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a69/
%G en
%F EJDE_2011__2011__a69
Vrabel, Robert. A priori estimates for solutions to a four point boundary value problem for singularly perturbed semilinear differential equations. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a69/