Multiple positive periodic solutions to a non-autonomous Lotka-Volterra predator-prey system with harvesting terms
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using Mawhin's continuation theorem of coincidence degree theory, we establish the existence of $2^{n+m}$ positive periodic solutions for a non-autonomous Lotka-Volterra network-like predator-prey system with harvesting terms. Here n and m denote the number of prey and predator species respectively. An example is given to illustrate our results.
Classification : 34C25, 92D25
Keywords: periodic solutions, Lotka-Volterra network, predator-prey system, coincidence degree, harvesting term
@article{EJDE_2011__2011__a66,
     author = {Zhao, Kaihong and Li, Yongkun},
     title = {Multiple positive periodic solutions to a non-autonomous {Lotka-Volterra} predator-prey system with harvesting terms},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a66/}
}
TY  - JOUR
AU  - Zhao, Kaihong
AU  - Li, Yongkun
TI  - Multiple positive periodic solutions to a non-autonomous Lotka-Volterra predator-prey system with harvesting terms
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a66/
LA  - en
ID  - EJDE_2011__2011__a66
ER  - 
%0 Journal Article
%A Zhao, Kaihong
%A Li, Yongkun
%T Multiple positive periodic solutions to a non-autonomous Lotka-Volterra predator-prey system with harvesting terms
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a66/
%G en
%F EJDE_2011__2011__a66
Zhao, Kaihong; Li, Yongkun. Multiple positive periodic solutions to a non-autonomous Lotka-Volterra predator-prey system with harvesting terms. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a66/