Fundamental solutions to the $p$-Laplace equation in a class of Grushin vector fields
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We find the fundamental solution to the p-Laplace equation in a class of Grushin-type spaces. The singularity occurs at the sub-Riemannian points, which naturally corresponds to finding the fundamental solution of a generalized Grushin operator in Euclidean space. We then use this solution to find an infinite harmonic function with specific boundary data and to compute the capacity of annuli centered at the singularity.
Classification : 35H20, 53C17, 17B70
Keywords: Grushin-type spaces, p-Laplacian
@article{EJDE_2011__2011__a51,
     author = {Bieske, Thomas},
     title = {Fundamental solutions to the $p${-Laplace} equation in a class of {Grushin} vector fields},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a51/}
}
TY  - JOUR
AU  - Bieske, Thomas
TI  - Fundamental solutions to the $p$-Laplace equation in a class of Grushin vector fields
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a51/
LA  - en
ID  - EJDE_2011__2011__a51
ER  - 
%0 Journal Article
%A Bieske, Thomas
%T Fundamental solutions to the $p$-Laplace equation in a class of Grushin vector fields
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a51/
%G en
%F EJDE_2011__2011__a51
Bieske, Thomas. Fundamental solutions to the $p$-Laplace equation in a class of Grushin vector fields. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a51/