Hyers-Ulam stability for second-order linear differential equations with boundary conditions
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove the Hyers-Ulam stability of linear differential equations of second-order with boundary conditions or with initial conditions. That is, if y is an approximate solution of the differential equation $y''+ \beta (x) y = 0$ with $y(a) = y(b) =0$, then there exists an exact solution of the differential equation, near y.
Classification : 34K20, 26D10
Keywords: Hyers-Ulam stability, differential equation
@article{EJDE_2011__2011__a45,
     author = {Gavruta, Pasc and Jung, Soon-Mo and Li, Yongjin},
     title = {Hyers-Ulam stability for second-order linear differential equations with boundary conditions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a45/}
}
TY  - JOUR
AU  - Gavruta, Pasc
AU  - Jung, Soon-Mo
AU  - Li, Yongjin
TI  - Hyers-Ulam stability for second-order linear differential equations with boundary conditions
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a45/
LA  - en
ID  - EJDE_2011__2011__a45
ER  - 
%0 Journal Article
%A Gavruta, Pasc
%A Jung, Soon-Mo
%A Li, Yongjin
%T Hyers-Ulam stability for second-order linear differential equations with boundary conditions
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a45/
%G en
%F EJDE_2011__2011__a45
Gavruta, Pasc; Jung, Soon-Mo; Li, Yongjin. Hyers-Ulam stability for second-order linear differential equations with boundary conditions. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a45/