Solution to the triharmonic heat equation
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the equation $$ \frac{\partial}{\partial t}\,u(x,t)-c^2\circledast u(x,t)=0 $$ with initial condition $$ \circledast=\Big(\sum^p_{i=1}\frac{\partial^2}{\partial x^2_i}\Big)^3 +\Big(\sum^{p+q}_{j=p+1}\frac{\partial^2}{\partial x^2_j}\Big)^3 $$ with $$ \frac{\partial}{\partial t} u(x,t)-c^2\Delta^3 u(x,t)=0\,. $$
Classification : 46F10, 46F12
Keywords: Fourier transform, tempered distribution, diamond operator
@article{EJDE_2011__2011__a31,
     author = {Satsanit, Wancha},
     title = {Solution to the triharmonic heat equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a31/}
}
TY  - JOUR
AU  - Satsanit, Wancha
TI  - Solution to the triharmonic heat equation
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a31/
LA  - en
ID  - EJDE_2011__2011__a31
ER  - 
%0 Journal Article
%A Satsanit, Wancha
%T Solution to the triharmonic heat equation
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a31/
%G en
%F EJDE_2011__2011__a31
Satsanit, Wancha. Solution to the triharmonic heat equation. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a31/