Positive solutions for a nonlinear $n$-th order $m$-point boundary-value problem
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using the Leggett-Williams fixed point theorem in cones, we prove the existence of at least three positive solutions to the nonlinear $$\displaylines{ \Delta^{n}u(k)+a(k)f(k,u)=0, \quad k\in \{0,N\},\cr u(0)=0,\; \Delta u(0)=0, \dots, \Delta^{n-2}u(0)=0,\quad u(N+n)=\sum_{i=1}^{m-2}\alpha_iu(\xi_i). }$$
Classification : 39A10
Keywords: boundary value problem, positive solution, fixed point theorem, Green's function
@article{EJDE_2011__2011__a30,
     author = {Zhang, Jiehua and Guo, Yanping and Ji, Yude},
     title = {Positive solutions for a nonlinear $n$-th order $m$-point boundary-value problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a30/}
}
TY  - JOUR
AU  - Zhang, Jiehua
AU  - Guo, Yanping
AU  - Ji, Yude
TI  - Positive solutions for a nonlinear $n$-th order $m$-point boundary-value problem
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a30/
LA  - en
ID  - EJDE_2011__2011__a30
ER  - 
%0 Journal Article
%A Zhang, Jiehua
%A Guo, Yanping
%A Ji, Yude
%T Positive solutions for a nonlinear $n$-th order $m$-point boundary-value problem
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a30/
%G en
%F EJDE_2011__2011__a30
Zhang, Jiehua; Guo, Yanping; Ji, Yude. Positive solutions for a nonlinear $n$-th order $m$-point boundary-value problem. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a30/