The Legendre equation and its self-adjoint operators
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Legendre equation has interior singularities at -1 and +1. The celebrated classical Legendre polynomials are the eigenfunctions of a particular self-adjoint operator in $L^2(-1,1)$. We characterize all self-adjoint Legendre operators in $L^2(-1,1)$ as well as those in $L^2(-\infty,-1)$ and in $L^2(1,\infty)$ and discuss their spectral properties. Then, using the "three-interval theory", we find all self-adjoint Legendre operators in $L^2(-\infty,\infty)$. These include operators which are not direct sums of operators from the three separate intervals and thus are determined by interactions through the singularities at -1 and +1.
Classification : 05C38, 15A15, 05A15, 15A18
Keywords: Legendre equation, self-adjoint operators, spectrum, three-interval problem
@article{EJDE_2011__2011__a27,
     author = {Littlejohn, Lance L. and Zettl, Anton},
     title = {The {Legendre} equation and its self-adjoint operators},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a27/}
}
TY  - JOUR
AU  - Littlejohn, Lance L.
AU  - Zettl, Anton
TI  - The Legendre equation and its self-adjoint operators
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a27/
LA  - en
ID  - EJDE_2011__2011__a27
ER  - 
%0 Journal Article
%A Littlejohn, Lance L.
%A Zettl, Anton
%T The Legendre equation and its self-adjoint operators
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a27/
%G en
%F EJDE_2011__2011__a27
Littlejohn, Lance L.; Zettl, Anton. The Legendre equation and its self-adjoint operators. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a27/