Operator type expansion-compression fixed point theorem
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article presents an alternative to the compression and expansion fixed point theorems of functional type by using operators and functions to replace the functionals and constants that are used in functional compression and expansion fixed point theorems. Only portions of the boundaries are required to be mapped outward or inward in the spirit of the original work of Leggett-Williams. We conclude with an application verifying the existence of a positive solution to a second-order boundary-value problem.
Classification : 47H10
Keywords: fixed-point theorems, Leggett-Williams, expansion, compression, positive solutions
@article{EJDE_2011__2011__a21,
     author = {Anderson, Douglas R. and Avery, Richard I. and Henderson, Johnny and Liu, Xueyan},
     title = {Operator type expansion-compression fixed point theorem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a21/}
}
TY  - JOUR
AU  - Anderson, Douglas R.
AU  - Avery, Richard I.
AU  - Henderson, Johnny
AU  - Liu, Xueyan
TI  - Operator type expansion-compression fixed point theorem
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a21/
LA  - en
ID  - EJDE_2011__2011__a21
ER  - 
%0 Journal Article
%A Anderson, Douglas R.
%A Avery, Richard I.
%A Henderson, Johnny
%A Liu, Xueyan
%T Operator type expansion-compression fixed point theorem
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a21/
%G en
%F EJDE_2011__2011__a21
Anderson, Douglas R.; Avery, Richard I.; Henderson, Johnny; Liu, Xueyan. Operator type expansion-compression fixed point theorem. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a21/