Existence and asymptotic behaviour of positive solutions for semilinear elliptic systems in the Euclidean plane
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the semilinear elliptic system $$ \Delta u=\lambda p(x)f(v),\Delta v=\lambda q(x)g(u), $$ in an unbounded domain D in $ \mathbb{R}^2$ with compact boundary subject to some Dirichlet conditions. We give existence results according to the monotonicity of the nonnegative continuous functions f and g. The potentials p and q are nonnegative and required to satisfy some hypotheses related on a Kato class.
Classification : 34B27, 35J45, 45M20
Keywords: Green function, semilinear elliptic systems, positive solution
@article{EJDE_2011__2011__a17,
     author = {Ghanmi, Abdeljabbar and Toumi, Faten},
     title = {Existence and asymptotic behaviour of positive solutions for semilinear elliptic systems in the {Euclidean} plane},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a17/}
}
TY  - JOUR
AU  - Ghanmi, Abdeljabbar
AU  - Toumi, Faten
TI  - Existence and asymptotic behaviour of positive solutions for semilinear elliptic systems in the Euclidean plane
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a17/
LA  - en
ID  - EJDE_2011__2011__a17
ER  - 
%0 Journal Article
%A Ghanmi, Abdeljabbar
%A Toumi, Faten
%T Existence and asymptotic behaviour of positive solutions for semilinear elliptic systems in the Euclidean plane
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a17/
%G en
%F EJDE_2011__2011__a17
Ghanmi, Abdeljabbar; Toumi, Faten. Existence and asymptotic behaviour of positive solutions for semilinear elliptic systems in the Euclidean plane. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a17/