Existence of positive solutions for some nonlinear elliptic systems on the half space
Electronic Journal of Differential Equations, Tome 2011 (2011).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove some existence of positive solutions to the semilinear elliptic system $$\displaylines{ \Delta u =\lambda p(x)g(v)\cr \Delta v =\mu q(x)f(u) }$$ in the half space ${\mathbb{R}}^n_+, n\geq 2$, subject to some Dirichlet conditions, where $\lambda$ and $\mu$ are nonnegative parameters. The functions $f, g$ are nonnegative continuous monotone on $(0,\infty)$ and the potentials $p, q$ are nonnegative and satisfy some hypotheses related to the Kato class $K^\infty({\mathbb{R}}^n_+)$.
Classification : 35J55, 35J60, 35J65
Keywords: Green function, Kato class, elliptic systems, positive solutions
@article{EJDE_2011__2011__a13,
     author = {Zeddini, Noureddine},
     title = {Existence of positive solutions for some nonlinear elliptic systems on the half space},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2011},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a13/}
}
TY  - JOUR
AU  - Zeddini, Noureddine
TI  - Existence of positive solutions for some nonlinear elliptic systems on the half space
JO  - Electronic Journal of Differential Equations
PY  - 2011
VL  - 2011
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a13/
LA  - en
ID  - EJDE_2011__2011__a13
ER  - 
%0 Journal Article
%A Zeddini, Noureddine
%T Existence of positive solutions for some nonlinear elliptic systems on the half space
%J Electronic Journal of Differential Equations
%D 2011
%V 2011
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a13/
%G en
%F EJDE_2011__2011__a13
Zeddini, Noureddine. Existence of positive solutions for some nonlinear elliptic systems on the half space. Electronic Journal of Differential Equations, Tome 2011 (2011). http://geodesic.mathdoc.fr/item/EJDE_2011__2011__a13/