Periodic solutions of neutral delay integral equations of advanced type
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the existence of continuous periodic solutions of a neutral delay integral equation of advanced type. In the analysis we employ three fixed point theorems: Banach, Krasnosel'skii, and Krasnosel'skii-Schaefer. Krasnosel'skii-Schaefer fixed point theorem requires an a priori bound on all solutions. We employ a Liapunov type method to obtain such bound.
Classification : 45D05, 45J05
Keywords: Volterra integral equation, neutral delay integral equation, periodic solution, krasnosel'sii's fixed point theorem, Schaefer's fixed point theorem, Liapunov's method
@article{EJDE_2010__2010__a77,
     author = {Islam, Muhammad N. and Sultana, Nasrin and Booth, James},
     title = {Periodic solutions of neutral delay integral equations of advanced type},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a77/}
}
TY  - JOUR
AU  - Islam, Muhammad N.
AU  - Sultana, Nasrin
AU  - Booth, James
TI  - Periodic solutions of neutral delay integral equations of advanced type
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a77/
LA  - en
ID  - EJDE_2010__2010__a77
ER  - 
%0 Journal Article
%A Islam, Muhammad N.
%A Sultana, Nasrin
%A Booth, James
%T Periodic solutions of neutral delay integral equations of advanced type
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a77/
%G en
%F EJDE_2010__2010__a77
Islam, Muhammad N.; Sultana, Nasrin; Booth, James. Periodic solutions of neutral delay integral equations of advanced type. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a77/