Infinity Laplace equation with non-trivial right-hand side
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We analyze the set of continuous viscosity solutions of the infinity Laplace equation $-\Delta^N_{\infty}w(x) = f(x)$, with generally sign-changing right-hand side in a bounded domain. The existence of a least and a greatest continuous viscosity solutions, up to the boundary, is proved through a Perron's construction by means of a strict comparison principle. These extremal solutions are proved to be absolutely extremal solutions.
Classification : 35J70, 35B35
Keywords: infinity Laplace equation, inhomogeneous equation, viscosity solutions, least solution, greatest solution, strict comparison principle, existence, uniqueness, local Lipschitz continuity
@article{EJDE_2010__2010__a46,
     author = {Lu, Guozhen and Wang, Peiyong},
     title = {Infinity {Laplace} equation with non-trivial right-hand side},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a46/}
}
TY  - JOUR
AU  - Lu, Guozhen
AU  - Wang, Peiyong
TI  - Infinity Laplace equation with non-trivial right-hand side
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a46/
LA  - en
ID  - EJDE_2010__2010__a46
ER  - 
%0 Journal Article
%A Lu, Guozhen
%A Wang, Peiyong
%T Infinity Laplace equation with non-trivial right-hand side
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a46/
%G en
%F EJDE_2010__2010__a46
Lu, Guozhen; Wang, Peiyong. Infinity Laplace equation with non-trivial right-hand side. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a46/