An inverse boundary-value problem for semilinear elliptic equations
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that in dimension two or greater, a certain equivalence class of the scalar coefficient $a(x,u)$ of the semilinear elliptic equation $\Delta u\,+a(x,u)=0$ is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient $a(x,u)$ can be determined by the Dirichlet to Neumann map under some additional hypotheses.
Classification : 35R30
Keywords: inverse problem, Dirichlet to Neumann map
@article{EJDE_2010__2010__a3,
     author = {Sun, Ziqi},
     title = {An inverse boundary-value problem for semilinear elliptic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a3/}
}
TY  - JOUR
AU  - Sun, Ziqi
TI  - An inverse boundary-value problem for semilinear elliptic equations
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a3/
LA  - en
ID  - EJDE_2010__2010__a3
ER  - 
%0 Journal Article
%A Sun, Ziqi
%T An inverse boundary-value problem for semilinear elliptic equations
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a3/
%G en
%F EJDE_2010__2010__a3
Sun, Ziqi. An inverse boundary-value problem for semilinear elliptic equations. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a3/