Properties of the first eigenvalue of a model for non Newtonian fluids
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a nonlinear Stokes problem on a bounded domain. We prove the existence of the first eigenvalue which is given by a minimization formula. Some properties such as strict monotony and the Fredholm alternative are established.
Classification : 74S05, 76T10
Keywords: k-Laplacian, eigenvalue, minimization
@article{EJDE_2010__2010__a294,
     author = {Chakrone, Omar and Diyer, Okacha and Sbibih, Driss},
     title = {Properties of the first eigenvalue of a model for non {Newtonian} fluids},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a294/}
}
TY  - JOUR
AU  - Chakrone, Omar
AU  - Diyer, Okacha
AU  - Sbibih, Driss
TI  - Properties of the first eigenvalue of a model for non Newtonian fluids
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a294/
LA  - en
ID  - EJDE_2010__2010__a294
ER  - 
%0 Journal Article
%A Chakrone, Omar
%A Diyer, Okacha
%A Sbibih, Driss
%T Properties of the first eigenvalue of a model for non Newtonian fluids
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a294/
%G en
%F EJDE_2010__2010__a294
Chakrone, Omar; Diyer, Okacha; Sbibih, Driss. Properties of the first eigenvalue of a model for non Newtonian fluids. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a294/