Liénard type $p$-Laplacian neutral Rayleigh equation with a deviating argument
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Based on Manasevich-Mawhin continuation theorem, we prove the existence of periodic solutions for Lienard type $$ (\phi_p(x(t)-c x(t-\sigma))')'+f(x(t))x'(t)+ g(t,x(t-\tau(t)))=e(t). $$ An example is provided to illustrate our results.
Classification : 34C25, 34B15
Keywords: periodic solution, neutral Rayleigh equation, Liénard equation, deviating argument, p-Laplacian, manasevich-mawhin continuation
@article{EJDE_2010__2010__a282,
     author = {Anane, Aomar and Chakrone, Omar and Moutaouekkil, Loubna},
     title = {Li\'enard type $p${-Laplacian} neutral {Rayleigh} equation with a deviating argument},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a282/}
}
TY  - JOUR
AU  - Anane, Aomar
AU  - Chakrone, Omar
AU  - Moutaouekkil, Loubna
TI  - Liénard type $p$-Laplacian neutral Rayleigh equation with a deviating argument
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a282/
LA  - en
ID  - EJDE_2010__2010__a282
ER  - 
%0 Journal Article
%A Anane, Aomar
%A Chakrone, Omar
%A Moutaouekkil, Loubna
%T Liénard type $p$-Laplacian neutral Rayleigh equation with a deviating argument
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a282/
%G en
%F EJDE_2010__2010__a282
Anane, Aomar; Chakrone, Omar; Moutaouekkil, Loubna. Liénard type $p$-Laplacian neutral Rayleigh equation with a deviating argument. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a282/