Existence and uniqueness for a $p$-Laplacian nonlinear eigenvalue problem
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the Dirichlet eigenvalue problem $$ -\hbox{div}(|\nabla u|^{p-2}\nabla u ) =\lambda \| u\|_q^{p-q}|u|^{q-2}u, $$ where the unknowns $u\in W^{1,p}_0(\Omega )$ (the eigenfunction) and $\lambda >0$ (the eigenvalue), $\Omega $ is an arbitrary domain in $\mathbb{R}^N$ with finite measure, $1$ if $1$ and $p^*=\infty $ if $p\geq N$. We study several existence and uniqueness results as well as some properties of the solutions. Moreover, we indicate how to extend to the general case some proofs known in the classical case $p=q$.
Classification : 35P30
Keywords: p-Laplacian, eigenvalues, existence, uniqueness results
@article{EJDE_2010__2010__a241,
     author = {Franzina, Giovanni and Lamberti, Pier Domenico},
     title = {Existence and uniqueness for a $p${-Laplacian} nonlinear eigenvalue problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a241/}
}
TY  - JOUR
AU  - Franzina, Giovanni
AU  - Lamberti, Pier Domenico
TI  - Existence and uniqueness for a $p$-Laplacian nonlinear eigenvalue problem
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a241/
LA  - en
ID  - EJDE_2010__2010__a241
ER  - 
%0 Journal Article
%A Franzina, Giovanni
%A Lamberti, Pier Domenico
%T Existence and uniqueness for a $p$-Laplacian nonlinear eigenvalue problem
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a241/
%G en
%F EJDE_2010__2010__a241
Franzina, Giovanni; Lamberti, Pier Domenico. Existence and uniqueness for a $p$-Laplacian nonlinear eigenvalue problem. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a241/