Stability of delay differential equations with oscillating coefficients
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the solutions to the delay differential equation equation $$ \dot x(t)=-a(t)x(t-h), $$ where the coefficient $a(t)$ is not necessarily positive. It is proved that this equation is exponentially stable provided that $a(t)=b+c(t)$ for some positive constant b less than $\pi/(2h)$, and the integral $\int_0^t c(s)ds$ is sufficiently small for all $t>0$. In this case the 3/2-stability theorem is improved.
Classification : 34K20
Keywords: linear delay differential equation, exponential stability
@article{EJDE_2010__2010__a233,
     author = {Gil', Michael I.},
     title = {Stability of delay differential equations with oscillating coefficients},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a233/}
}
TY  - JOUR
AU  - Gil', Michael I.
TI  - Stability of delay differential equations with oscillating coefficients
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a233/
LA  - en
ID  - EJDE_2010__2010__a233
ER  - 
%0 Journal Article
%A Gil', Michael I.
%T Stability of delay differential equations with oscillating coefficients
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a233/
%G en
%F EJDE_2010__2010__a233
Gil', Michael I. Stability of delay differential equations with oscillating coefficients. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a233/