Compactness results for Ginzburg-Landau type functionals with general potentials
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study compactness and $\Gamma$-convergence for Ginzburg-Landau type functionals. We only assume that the potential is continuous and positive definite close to one circular well, but allow large zero sets inside the well. We show that the relaxation of the assumptions does not change the results to leading order unless the energy is very large.
Classification : 35J50, 35B25
Keywords: gamma-convergence, compactness for Jacobians, Ginzburg-Landau functional
@article{EJDE_2010__2010__a230,
     author = {Kurzke, Matthias},
     title = {Compactness results for {Ginzburg-Landau} type functionals with general potentials},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a230/}
}
TY  - JOUR
AU  - Kurzke, Matthias
TI  - Compactness results for Ginzburg-Landau type functionals with general potentials
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a230/
LA  - en
ID  - EJDE_2010__2010__a230
ER  - 
%0 Journal Article
%A Kurzke, Matthias
%T Compactness results for Ginzburg-Landau type functionals with general potentials
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a230/
%G en
%F EJDE_2010__2010__a230
Kurzke, Matthias. Compactness results for Ginzburg-Landau type functionals with general potentials. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a230/