Exact multiplicity of solutions for a class of two-point boundary value problems
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the exact multiplicity of nodal solutions of the boundary value problem $$\displaylines{ u''+\lambda f(u)=0 , \quad t\in (0, 1),\cr u'(0)=0,\quad u(1)=0, }$$ where $\lambda \in \mathbb{R}$ is a positive parameter. $f\in C^1(\mathbb{R}, \mathbb{R})$ satisfies $f'(u)>\frac{f(u)}{u}$, if $u\neq 0$. There exist $\theta_1$ such that $f(s_1)=f(0)=f(s_2)=0; uf(u)>0$, if $u$ or $u>s_2; uf(u)0$, if $s_1$ and $u\neq 0; \int_{\theta_1}^0 f(u)du=\int_0^{\theta_2} f(u)du=0$. The limit $f_\infty=\lim_{s\to \infty} \frac{f(s)}{s}\in (0,\infty)$. Using bifurcation techniques and the Sturm comparison theorem, we obtain curves of solutions which bifurcate from infinity at the eigenvalues of the corresponding linear problem, and obtain the exact multiplicity of solutions to the problem for $\lambda$ lying in some interval in $\mathbb{R}$.
Classification : 34B15, 34A23
Keywords: exact multiplicity, nodal solutions, bifurcation from infinity, linear eigenvalue problem
@article{EJDE_2010__2010__a226,
     author = {An, Yulian and Ma, Ruyun},
     title = {Exact multiplicity of solutions for a class of two-point boundary value problems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a226/}
}
TY  - JOUR
AU  - An, Yulian
AU  - Ma, Ruyun
TI  - Exact multiplicity of solutions for a class of two-point boundary value problems
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a226/
LA  - en
ID  - EJDE_2010__2010__a226
ER  - 
%0 Journal Article
%A An, Yulian
%A Ma, Ruyun
%T Exact multiplicity of solutions for a class of two-point boundary value problems
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a226/
%G en
%F EJDE_2010__2010__a226
An, Yulian; Ma, Ruyun. Exact multiplicity of solutions for a class of two-point boundary value problems. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a226/