Anti-periodic solutions for recurrent neural networks without assuming global Lipschitz conditions
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we study recurrent neural networks with time-varying delays and continuously distributed delays. Without assuming global Lipschitz conditions on the activation functions, we establish the existence and local exponential stability of anti-periodic solutions.
Classification : 34C25, 34D40
Keywords: recurrent neural networks, anti-periodic, exponential stability, delay
@article{EJDE_2010__2010__a22,
     author = {Zhang, Hong and Wu, Yuanheng},
     title = {Anti-periodic solutions for recurrent neural networks without assuming global {Lipschitz} conditions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a22/}
}
TY  - JOUR
AU  - Zhang, Hong
AU  - Wu, Yuanheng
TI  - Anti-periodic solutions for recurrent neural networks without assuming global Lipschitz conditions
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a22/
LA  - en
ID  - EJDE_2010__2010__a22
ER  - 
%0 Journal Article
%A Zhang, Hong
%A Wu, Yuanheng
%T Anti-periodic solutions for recurrent neural networks without assuming global Lipschitz conditions
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a22/
%G en
%F EJDE_2010__2010__a22
Zhang, Hong; Wu, Yuanheng. Anti-periodic solutions for recurrent neural networks without assuming global Lipschitz conditions. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a22/