A Holmgren type theorem for partial differential equations whose coefficients are Gevrey functions
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we consider a uniqueness theorem of Holmgren type for p-th order Kovalevskaja linear partial differential equations whose coefficients are Gevrey functions. We prove that the only $C^p$-solution to the zero initial-valued problem is the identically zero function. To prove this result we use the uniqueness theorem for higher-order ordinary differential equations in Banach scales.
Classification : 35A05, 35A10, 35G10
Keywords: Banach scale, gevery function, holmgren type, uniqueness theorem
@article{EJDE_2010__2010__a152,
     author = {Kawagishi, Masaki},
     title = {A {Holmgren} type theorem for partial differential equations whose coefficients are {Gevrey} functions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a152/}
}
TY  - JOUR
AU  - Kawagishi, Masaki
TI  - A Holmgren type theorem for partial differential equations whose coefficients are Gevrey functions
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a152/
LA  - en
ID  - EJDE_2010__2010__a152
ER  - 
%0 Journal Article
%A Kawagishi, Masaki
%T A Holmgren type theorem for partial differential equations whose coefficients are Gevrey functions
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a152/
%G en
%F EJDE_2010__2010__a152
Kawagishi, Masaki. A Holmgren type theorem for partial differential equations whose coefficients are Gevrey functions. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a152/