Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns the existence of solutions and the decay of the energy of the mixed problem for the coupled system of Klein-Gordon equations $$\displaylines{ u'' - \Delta u + \alpha v^{ 2}u=0 \quad\hbox{in }\Omega \times (0, \infty), \cr v'' - \Delta v + \alpha u^{2}v=0 \quad\hbox{in }\Omega \times (0, \infty), }$$ with the nonlinear boundary conditions, $$\displaylines{ \frac{\partial u}{\partial \nu} + h_1(.,u')=0 \quad\hbox{on } \Gamma_1 \times (0, \infty), \cr \frac{\partial v}{\partial \nu} + h_2(.,v')=0 \quad\hbox{on } \Gamma_1 \times (0, \infty), }$$ and boundary conditions $u=v=0$ on $(\Gamma \setminus \Gamma_1) \times (0,\infty)$, where $\Omega$ is a bounded open set of $\mathbb{R}^n~(n \leq 3), \alpha >0$ a real number, $\Gamma_1$ a subset of the boundary $\Gamma$ of $\Omega$ and $h_i$ a real function defined on $\Gamma_1 \times (0, \infty)$. Assuming that each $h_i$ is strongly monotone in the second variable, the existence of global solutions of the mixed problem is obtained. For that it is used the Galerkin method, the Strauss' approximations of real functions and trace theorems for non-smooth functions. The exponential decay of the energy for a particular stabilizer is derived by application of a Lyapunov functional.
Classification : 35L70, 35L20, 35L05
Keywords: Galerkin method, special basis, boundary stabilization
@article{EJDE_2010__2010__a136,
     author = {Louredo, Aldo Trajano and Milla Miranda, M.},
     title = {Nonlinear boundary dissipation for a coupled system of {Klein-Gordon} equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a136/}
}
TY  - JOUR
AU  - Louredo, Aldo Trajano
AU  - Milla Miranda, M.
TI  - Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a136/
LA  - en
ID  - EJDE_2010__2010__a136
ER  - 
%0 Journal Article
%A Louredo, Aldo Trajano
%A Milla Miranda, M.
%T Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a136/
%G en
%F EJDE_2010__2010__a136
Louredo, Aldo Trajano; Milla Miranda, M. Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a136/