Almost automorphic solutions of neutral functional differential equations
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we prove the existence and uniqueness of almost automorphic solutions to the non-autonomous evolution equation $$ \frac{d}{dt}(u(t)-F_1(t,B_1u(t)))=A(t)(u(t)-F_1(t,Bu(t)))+F_2(t,u(t),B_2u(t)), \quad t\in \mathbb{R} $$ where $A(t)$ generates a hyperbolic evolution family $U(t,s)$ (not necessarily periodic) in a Banach space, and $B_1,B_2$ are bounded linear operators. The results are obtained by means of fixed point methods.
Classification : 34K05, 34A12, 34A40
Keywords: neutral differential equation, almost automorphic functions, almost periodic functions, exponentially stable semigroup, semigroup of linear operators
@article{EJDE_2010__2010__a111,
     author = {Mophou, Gis\`ele M. and N'Gu\'er\'ekata, Gaston M.},
     title = {Almost automorphic solutions of neutral functional differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a111/}
}
TY  - JOUR
AU  - Mophou, Gisèle M.
AU  - N'Guérékata, Gaston M.
TI  - Almost automorphic solutions of neutral functional differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a111/
LA  - en
ID  - EJDE_2010__2010__a111
ER  - 
%0 Journal Article
%A Mophou, Gisèle M.
%A N'Guérékata, Gaston M.
%T Almost automorphic solutions of neutral functional differential equations
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a111/
%G en
%F EJDE_2010__2010__a111
Mophou, Gisèle M.; N'Guérékata, Gaston M. Almost automorphic solutions of neutral functional differential equations. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a111/