Existence and uniqueness of classical solutions to second-order quasilinear elliptic equations
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article studies the existence of solutions to the second-order quasilinear elliptic equation $$ -\nabla \cdot(a(u) \nabla u) + v\cdot \nabla u=f $$ with the condition $u(x_0)=u_0$ at a certain point in the domain, which is the 2 or the 3 dimensional torus. We prove that if the functions a, f, v satisfy certain conditions, then there exists a unique classical solution. Applications of our results include stationary heat/diffusion problems with convection and with a source/sink, when the value of the solution is known at a certain location.
Classification : 35A05
Keywords: existence, uniqueness, quasilinear, elliptic
@article{EJDE_2010__2010__a105,
     author = {Denny, Diane L.},
     title = {Existence and uniqueness of classical solutions to second-order quasilinear elliptic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a105/}
}
TY  - JOUR
AU  - Denny, Diane L.
TI  - Existence and uniqueness of classical solutions to second-order quasilinear elliptic equations
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a105/
LA  - en
ID  - EJDE_2010__2010__a105
ER  - 
%0 Journal Article
%A Denny, Diane L.
%T Existence and uniqueness of classical solutions to second-order quasilinear elliptic equations
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a105/
%G en
%F EJDE_2010__2010__a105
Denny, Diane L. Existence and uniqueness of classical solutions to second-order quasilinear elliptic equations. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a105/